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1) Introduction
Parameters from the PIC/REMEX revised paper

Pic 1 PIC 2
Cell lengths cm 19 19
Momentum MeV/c 100 100
Muons/bunch 1011 1011

Absorber thick mm 6.4 1.6
Absorber Mat Be Be
Trans RMS emit mm mrad 600 30
Sigma(theta) Mrad 200 200
Sigma(r) mm 3 0.15
βBeam mm 15 0.75
εo mm mrad 118 6.0
RMS dp/p % 3 3
Sigma(z) cm 0.5 0.5
Long RMS emittance cm 0.015 0.015

The blue numbers differ from the original paper
The red numbers are calculated on right

β⊥ =
σx,y

σθx,θy

= 15 → (0.75 mm)

material T density dE/dx LR Co
oK kg/m3 MeV/m m 10−4

Liquid H2 20 71 28.7 8.65 38
Liquid He 4 125 24.2 7.55 51
LiH 300 820 159 0.971 61
Li 300 530 87.5 1.55 69
Be 300 1850 295 0.353 89
Al 300 2700 436 0.089 248

εo =
β⊥

βv
CBe

dE/dx(min)

dE/dx(p)

≈ 118 → 6.0 (10−6m)
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Introduction Continued

• There has been considerable confusion about the space charge tune shift in
the proposed PIC lattices

• This confusion arises from the special case of PIC operation

– In a PIC lattice there is a deliberate miss-match between
the beam beta (βbeam = σx/σθx) and the latice beta (βlattice)

– The lattice operates on a half integer resonance: ν = 0.5

• The confusion arises because when βbeam 6= βlattice then there are two different
phase advances and thus two different tunes and tune shifts:

χlattice =
∫ ds

βlattice
χbeam =

∫ ds

βbeam

νlattice =
∫ ds

2π βlattice
νbeam =

∫ ds

2π βbeam

• In the following we will re-derive the space charge tune shifts for each definition
and examine the constraints on each

• In the following βv = v/c. The emittance ε⊥ is the normalized rms value, so
that for an upright ellipse:

ε⊥ = βvγ σx σθ
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2) Space Charge Force

The defocus radial force F (r) =



2mc2 rµ

γ2




(dN (r)/ds)

r

where dN (r)/ds is the total line charge density inside a radius r

(dN (r)/ds) =
∫ r
o 2πr (dn(r)/ds) dr

for a flat distribution up to a radius a

(dN (r)/ds) = (dn(o)/ds) π r2 = (dN (∞)/ds)
r2

a2

for a Gaussian distribution in r

(dN (r)/ds) = (dN (∞)/ds)

e

r2

2σ2




r2

2σ2

For small r and flat (as given in SY Lee p109)

F (r) =



2mc2 rµ

γ2






(dN (∞)/ds)

a2


 r

For small r and gaussian

F (r) =



2mc2 rµ

γ2






(dN (∞)/ds)

2σ2


 r
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3) Defocus Strength K
F (r) introduces a ’quadrupole’ like defocus, in both x and y, of strength Ksc(r):

Ksc(r) =
(dN (∞)/ds) rµ

σ2 β2
v γ3

Using

σ2 =
ε⊥ βbeam

βvγ

Ksc(r) =
(dN (∞)/ds) rµ

ε⊥ βbeam βv γ2

Note that the βbeam must indeed be the beam parameter, not the lattice, since
it sets the beam dimension

For a bunch with Gaussian longtudinal shape

Ksc(r) =



Nµ√
2π σz







rµ

ε⊥ βv γ2







1

βbeam



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4) Resulting Tune Shifts (eg SY Lee p92)

∆νlattice =
1

4π

∫ L
o βlattice Kscds

Which came from Courant & Schnsider and is on solid ground
By analogy, but on weaker ground, we can define

∆νbeam(o) =
1

4π

∫ L
o βbeam Kscds

∆νbeam(o) =



Nµ√
2π σz




rµ

4π ε⊥ βvγ2




∮ βbeam

βbeam
ds


 =




Nµ rµ√
2π σz 4π ε⊥ βvγ2


 Lcell

This is true INDEPENDENT of β⊥ and proportional to 1/ε⊥. However, there
remains a question as to whether the derivation of ∆νbeam is correct
so we should look at ∆νlattice

∆νlattice(o) =




Nµ rµ√
2π σz 4π ε⊥ βvγ2







∮ βlattice

βbeam
ds




This is not independdent of s because the integration includes the s dependent
term (βlattice/βbeam). Note that this term, in the PIC case is greater than one and
is rising as βbeamfalls as a result of the falling ε⊥. So ∆νlattice is NOT independent
of β⊥, and is NOT indpendent of ε⊥
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5) PIC Constrains on ∆νlattice

Before a cell, the ellipse should be upright with

σx(1) =
ε⊥

βvγ σθ

If there is an error in νlattice of ∆νlattice,
The projected size of the beam after a cell:

σx(2) = → σθ βlattice sin(∆νlattice)

Our requirement is that σx(2) << σx(1):

σθ βlattice sin(∆νlattice) <<
ε⊥

βvγ σθ

∆νlattice <<
ε⊥

βvγ σ2
θ βlattice

The denominator is a constant, so
as ε⊥ falls with cooling, the requirement gets ever tighter

Numerically we must assure that the increase in σ is less than the decrement
in σ from the cooling. Since, at the end of PIC, this decrement is only about
0.3%, the constraint on ∆νlattice will be very tight
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6) Conclusion

• The beam defined tune shift is inpependent of the lattice βlattice

and inversely proportional to emittance

• But some questions remain about the derivation of this parameter in PIC’s
unmatched condition

• The more conventioal, lattice defined, tune shift ∆νlattice is not independent
of the β⊥s
and must be computed for any particular lattice

• ∆νlattice also rises as the emittance falls, though not as fast, or in such a
simple way as ∆νbeam

• The PIC constraint on the value of ∆νlattice is much tighter than that for
∆νbeam in a conventioal matched lattice, and rises linearly as the emittance
falls

• I hope to give numerical examples later
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